Extragenic suppressors of a dynein mutation that blocks nuclear migration in Aspergillus nidulans.

نویسندگان

  • G H Goldman
  • N R Morris
چکیده

Cytoplasmic dynein is a large molecular weight protein complex that functions as a microtubule-dependent, negative, end-directed "motor." Mutations in nudA, which encodes the heavy chain of cytoplasmic dynein, inhibit nuclear migration in Aspergillus nidulans. This paper describes the selection and characterization of extragenic suppressors of the nudA1 mutation preparatory to the identification of other proteins that interact directly or indirectly with the cytoplasmic dynein heavy chain. To facilitate future cloning of the suppressor genes, we have searched particularly for extragenic suppressor mutations that also convey a selectable phenotype, such as cold or dimethyl sulfoxide sensitivity. Genetic analysis of 16 revertants has defined at least five extragenic suppressors of nudA1 (snaA-E). All the sna mutations except one were recessive in diploids homozygous for nudA1 and heterozygous for sna mutations. To characterize the nuclear migration phenotype in the sna mutants, conidia of one representative of each complementation group were germinated, fixed and nuclei stained. The sna mutants display partial suppression of the nudA1 nuclear migration defect. Although conidiophores were produced in the sna mutants, they failed to develop normally and to produce spores. Examination of the nudA1,sna conidiophores under the microscope showed that nuclear migration into the metulae and phialides was defective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extragenic suppressors of nudC3, a mutation that blocks nuclear migration in Aspergillus nidulans.

Nuclear migration plays an important role in the growth and development of many organisms including the filamentous fungus Aspergillus nidulans. We have cloned three genes from A. nidulans, nudA, nudC, and nudF, in which mutations affect nuclear migration. The nudA gene encodes the heavy chain of cytoplasmic dynein. The nudC gene encodes a 22-kD protein. The nudF gene was identified as an extra...

متن کامل

Genetic and molecular analysis of a tRNA(Leu) missense suppressor of nudC3, a mutation that blocks nuclear migration in Aspergillus nidulans.

NudC encodes a protein of unknown biochemical function that is required for nuclear migration. In an attempt to define its function by identifying interacting proteins, a screen for extragenic suppressors of the temperature-sensitive nudC3 mutation was undertaken that identified nine snc genes. Here we demonstrate that nudC3 has a missense mutation at amino acid 146 that causes leucine to be re...

متن کامل

The “8-kD” Cytoplasmic Dynein Light Chain Is Required for Nuclear Migration and for Dynein Heavy Chain Localization in Aspergillus nidulans

The heavy chain of cytoplasmic dynein is required for nuclear migration in Aspergillus nidulans and other fungi. Here we report on a new gene required for nuclear migration, nudG, which encodes a homologue of the "8-kD" cytoplasmic dynein light chain (CDLC). We demonstrate that the temperature sensitive nudG8 mutation inhibits nuclear migration and growth at restrictive temperature. This mutati...

متن کامل

A screen for dynein synthetic lethals in Aspergillus nidulans identifies spindle assembly checkpoint genes and other genes involved in mitosis.

Cytoplasmic dynein is a ubiquitously expressed microtubule motor involved in vesicle transport, mitosis, nuclear migration, and spindle orientation. In the filamentous fungus Aspergillus nidulans, inactivation of cytoplasmic dynein, although not lethal, severely impairs nuclear migration. The role of dynein in mitosis and vesicle transport in this organism is unclear. To investigate the complet...

متن کامل

Identification of a topoisomerase I mutant, scsA1, as an extragenic suppressor of a mutation in scaA(NBS1), the apparent homolog of human nibrin in Aspergillus nidulans.

The Mre11-Rad50-Nbs1 protein complex has emerged as a central player in the human cellular DNA damage response, and recent observations suggest that these proteins are at least partially responsible for the linking of DNA damage detection to DNA repair and cell cycle checkpoint functions. Mutations in scaA(NBS1), which encodes the apparent homolog of human nibrin in Aspergillus nidulans, inhibi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 139 3  شماره 

صفحات  -

تاریخ انتشار 1995